NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH

BULLETIN 205

Hydrology of the Southern Kermadec Trench Region

by N. M. Ridgway

> New Zealand Oceanographic Institute Memoir No. 56

NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH

BULLETIN 205

Hydrology of the Southern Kermadec Trench Region

by

N. M. RIDGWAY

New Zealand Oceanographic Institute, Wellington

New Zealand Oceanographic Institute Memoir No. 56 This publication should be referred to as: Bull. N.Z. Dep. scient. ind. Res. 205

MS Completed for Publication: October 1968

© Crown Copyright 1970

A. R. SHEARER, GOVERNMENT PRINTER, WELLINGTON, NEW ZEALAND-1970

FOREWORD

The present study is one of a number of detailed hydrological studies of the ocean surrounding New Zealand carried out by the Institute since 1963. These results greatly extend our knowledge of the hydrological situation that affects the local ocean circulation in the northern and eastern portions of New Zealand.

The memoir was prepared for publication by Miss B. J. Davison.

J. W. BRODIE, Director,

New Zealand Oceanographic Institute, Wellington.

CONTENTS

_

(cc) () (S

									Page
ABSTRACT	840 J.S.441	5.51	8.8	3.5		00815	24.402	1000	7
INTRODUCTION	++ ++		22	24			124		7
Data Collection	on	22	- 22	4.4	2.4	2.2			8
Data Presenta	tion		22	2.2	S		4.0	1.4.4	10
Previous Wor	k .	1.1.			14.4		++		11
DISCUSSION			10	22	12	22.1		- 522	12
Dynamic Top	ography and Ge	eostroph	ic Circula	ation		2.2		- 335	12
Surface Temp	erature and Sali	inity	11	22	22	100	1441		12
Upper Mixed	Layer								13
Subsurface Te	mperatures	1.1.		24					14
Subsurface Sa	linity ++	**	22			2257		124	20
Antarctic Inte	rmediate Water		<u></u>			2.2		- 52	22
Sound Velocit	y	1.1	24	24	1.1		1.2.1		22
Echo Sounder	Corrections								22
ACKNOWLEDGMEN	rs		12	22	1.	100		- 3224	22
References			2	22				- 12	23
APPENDIX-Station	n data					0000	0.000	204	23

FIGURES

									Page
1.	Station positions and gene	ral bathym	etry						8
2.	Geopotential topography of	of the sea su	urface rel	lative to 1,	000 deci	bars	++	- 44	10
3.	Surface isotherms	6.F.	6.6	24		100			11
4.	Surface isohalines		12	÷.	- 25	**		**	13
5.	Isohalines of minimum sal	inity	44	12	÷.	++	4.4		14
6.	Vertical meridional cross s	ections of t	emperati	ure and sa	linity				15
7.	Vertical zonal cross section	ns of tempe	rature ar	nd salinity		4.4	++	1.4.4	16
8.	Vertical meridional cross s	ection of so	ound velo	ocity	**	++	++	++	17
9.	Bathythermograph traces	2.00	14	¥9	1.0				18
10.	Contours of the depth of t	he mixed la	ayer	44		++	++	++	20
11.	Vertical meridional cross s	ection of te	mperatu	re and sali	inity	44.1			21

TABLES

							Page
1.	Station Circumstances	44	**		623	122	. 9
2.	Mean Vertical Sounding Velocity	2.2	77	372	2.5	(55)	21

HYDROLOGY OF THE SOUTHERN KERMADEC TRENCH REGION

by

N. M. RIDGWAY

New Zealand Oceanographic Institute

ABSTRACT

This hydrological survey, the third of a series made in the ocean waters surrounding New Zealand during consecutive summers, has revealed the temperature and salinity characteristics of an area to the north-east of New Zealand. The geopotential topography of the sea surface with respect to 1,000 decibars is discussed and some views are presented on the nature of the East Auckland and East Cape Currents systems; these appeared to be a discontinuous series of eddies. Calculations of the velocity of sound are made from the observed data, and velocity corrections for echo sounding are derived for a northern and a southern station.

INTRODUCTION

During the late summer of 1965 a temperature and salinity survey was conducted from the Institute's research vessel, m.v. *Taranui*, in the region of the southern Kermadec Trench. This survey was the third of a series conducted in successive summers. The results of the first two cruises have been published (Garner 1967a,b) and the surveys will eventually cover the oceans around New Zealand to approximately 500 miles off shore.

In the present survey 32 serial stations were occupied between 24 February and 13 March 1965. Twenty-nine of these were in the main survey area lying between latitudes 34° and 38°S and longitudes 178° E and 174° W. Three additional stations, situated to the south of this main block, were occupied on the return passage to Wellington.

Bathymetric features of the western part of the survey area are the southern ends of the Kermadec Trench and the Havre Trough separated by the Kermadec Ridge. Most of the stations were located over the western margins of the deep and rather featureless Southwestern Pacific Basin. Station positions are plotted in Fig. 1, which shows the bathymetry of the region.

Winds were moderately calm throughout the cruise period with the exception of a 5-day period

FIG. 1. Chart showing station positions and general bathymetry of the survey area. Depths expressed in metres.

from 2–7 March 1965 when strong winds and rough seas were encountered (Sta. D 404–411). Strong winds again prevailed during 12–13 March 1965 (Sta. D 420–422).

DATA COLLECTION

Knudsen reversing water bottles were used to collect water samples at each station. Normally, a single cast of 22 bottles was employed, the bottles being attached at irregular intervals along the 2,500 m wire. At some stations, however, up to five casts were necessary. These multiple casts were necessitated by bad weather conditions or by the presence of dense aggregations of *Pyrosoma*, which drifted on to the sounding wire and interfered with the bottle release mechanism by cushioning the impact of the messenger.

Water samples were stored in glass bottles in a temperature-controlled room where salinity analyses were made on the following day. This procedure ensured that temperature equilibrium existed between the samples, the Copenhagen Standard Sea Water, and the inductive type salinometer used (Brown and Hamon, 1961).

The temperature and pressure of the water at the depth of sampling were measured by Negretti and Zambra reversing thermometers. Corrected temperatures and depths were derived from these measurements in the manner described by Eger (1962). For the first part of the cruise an unprotected thermometer was used on each bottle at wire lengths of 50 m or more. At Sta. D 412 the wire parted when it fouled the bottom, and 11 bottles were lost. leaving only 5 serviceable unprotected thermometers. These thermometers were placed at wire lengths of 500, 1,000, 1,500, 2,000, and 2,500 m. Intermediate depths were derived from plots of wire lengths against the difference between wire lengths and thermometric depths. These plots were not consistent for stations D 406, D 409, D 417, D 418, and D 421. Data for the first two of these stations were completely rejected, but for the remaining three stations the thermometric depths only were rejected, since correlation of the temperature and salinity data was considered to be good. The measured values of temperature, salinity, and

potential density for these three stations (D 417, D 418, and D 421) are listed in Appendix 1. Wireangle depths (i.e., product of wire length and cosine of the wire angle at the surface) are shown also for these stations.

Bathythermograph soundings were taken at each station and provided details of the temperature structure in the upper 270 m of ocean. These soundings were made immediately the messenger had been released to trip the reversing bottles.

Surface temperature was recorded throughout the cruise by a thermograph, the sensing element being located in the intake pipe for the engine cooling water approximately 2 m below the sea surface.

TABLE 1. Station Circumstances. Air (screen) temperature and wind properties estimated at bridge level.

Station	N.Z. D	ate/Time	Air Temp.	W	ind	Latitude	Longitude (West Unless
No.	Start	Finish	(°C)	Dirn. (°T)	Speed (kt)	(South)	Otherwise Indicated)
	Feb/Ma	arch 1965					
D 389 D 390 D 391 D 392 D 393 D 394 D 395 D 396 D 397 D 398 D 399 D 400 D 401 D 402 D 403 D 404 D 405 D 407 D 408 D 407 D 408 D 411 D 412 D 413 D 414 D 415 D 416 D 417 D 418 D 419 D 420 D 421 D 422	24/1236 24/2244 25/0807 25/1935 26/0523 26/0523 26/1303 26/2115 27/0608 27/1545 27/2237 28/0756 28/1706 2/0428 2/1553 3/0827 4/2217 5/2104 7/0047 8/1044 8/0217 8/1044 8/0217 8/1044 8/2255 9/0907 9/1827 10/0418 10/1835 11/1619 12/1836 13/0700 13/1638	24/1626 25/0208 25/1337 25/2314 26/0733 26/1528 26/2358 27/1005 27/1759 28/0201 28/1114 28/1913 1/1021 1/2156 2/1030 2/2018 3/1220 5/0325 6/0005 7/0335 7/1822 8/0420 8/1617 9/0129 9/1140 9/2121 10/1110 10/2215 11/2027 13/0107 13/1057 13/1833	$18.3 \\ 18.6 \\ 18.5 \\ 19.0 \\ 19.3 \\ 20.3 \\ 19.2 \\ 19.6 \\ 19.5 \\ 18.7 \\ 19.6 \\ 20.0 \\ 17.5 \\ 18.9 \\ 19.0 \\ 18.8 \\ 19.0 \\ 18.8 \\ 19.3 \\ 19.7 \\ 21.8 \\ 19.7 \\ 21.8 \\ 19.7 \\ 20.0 \\ 19.7 \\ 20.0 \\ 19.7 \\ 18.5 \\ 17.2 \\ 17.0 \\ 17.5 \\ 17.2 \\ 17.0 \\ 17.5 \\ $	100 060 040 270 280 300 200 120 120 050 060 150 v'ble 270 v'ble 310 260 210 260 290 250 v'ble 000 120 120 120 120 120 120 120	$\begin{array}{c} 02\\ 02\\ 02\\ 02\\ 01\\ 06\\ 08\\ 02\\ 09\\ 11\\ 17\\ 15\\ 12\\ 15\\ 02\\ 12\\ 25\\ 02\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20$	38°00' 38°00' 38°00' 38°00' 38°00' 37°00' 37°00' 37°00' 37°00' 37°00' 37°00' 37°00' 37°00' 35°00' 36°00' 36°00' 36°00' 35°00' 34°00' 34°00' 34°00' 34°00' 34°00' 34°00' 30°00' 39°01'	179°20'E 179°25' 178°10.5' 176°55' 175°40' 174°25' 174°25' 175°40' 179°25' 179°20'E 179°30'A 176°55' 176°20' 176°35' 176°20' 176°35' 176°20' 178°30' 176°35' 176°20' 178°30' 179°38'
	Novem	ber 1965					
D 469 D 470 D 471 D 472 D 473 D 474	5/1318 5/1523 5/1750 5/2014 5/2152 6/0024	5/1508 5/1712 5/1922 5/2125 5/2335 6/0200	16.0 15.7 15.5 15.5 15.1 14.9	300 300 300 300 300 300 310	12 12 13 13 12 08	37°50′ 37°50′ 37°50′ 37°51′ 37°51′ 37°52′ 37°49.5′	179°23′E 179°18′E 179°13′E 179°08′E 179°03.5′E 178°59′E

FIG. 2. Geopotential topography of the sea surface relative to 1,000 decibars. Contour values expressed in dynamic metres. Contours also represent streamlines of the geostrophic circulation in the sense shown by the arrows.

DATA PRESENTATION

The observed values of depth, temperature, and salinity are listed in Appendix 1 with computed values of potential density, geopotential anomaly, and sound velocity. Potential densities and geopotential anomalies were obtained from the tables of LaFond (1951) and sound velocities from the tables of Bark *et al.* (1964). Also listed in the Appendix are data obtained at six shallow stations occupied on 5–6 November 1965 at intervals of 5 miles along latitude 37°50' S (approx.) to the east of East Cape, North Island. Station circumstances are described in Table 1, and in Table 2 the corrections to be applied to echo sounders calibrated for a velocity of sound of 1,500 m sec⁻¹ are shown for two selected stations.

The geopotential topography of the sea surface with respect to 1,000 decibars is shown in Fig. 2, and surface isotherms and isohalines are shown in Figs 3 and 4 respectively. Isohalines constructed from the minimum salinity values at each station are shown in Fig. 5.

Cross sections illustrating the vertical distribution of temperature and salinity are shown for northsouth and east-west directions (Figs 6, 7). The vertical distribution of sound velocity is illustrated in Fig. 8. The location of this cross section is the same as that shown in Fig. 6. Bathythermograph traces are

FIG. 3. Distribution of surface isotherms (°c).

reproduced in Fig. 9 and contours of the upper mixed layer depth in Fig. 10.

Two further cross sections showing the vertical distribution of temperature and salinity are illustrated in Fig. 11. These sections were constructed from the data obtained at the six shallow stations occupied off East Cape on 5-6 November 1965.

PREVIOUS WORK

Before the present survey, no systematic hydrological investigation of the area discussed here had taken place. Only five hydrological stations were occupied before 1955 (Garner, 1962), the first of these dating back to the cruise of HMS *Challenger* in 1874. One station was worked during the winter of 1956 and two more in the summer of 1957 in the area (Garner and Ridgway, 1965).

In the summer of 1958 the Soviet research ship *Vitiaz* occupied three stations within the survey area (Dobrovolsky *et al.*, 1960).

Garner (1967a) reported the results of a hydrological survey in the southern region of the Hikurangi Trench, immediately south of the present survey region. Garner showed that a tongue of relatively warm and saline subtropical water associated with the East Cape Current extended southwards off the east coast of the North Island. One aim of the present survey was to determine the source of this water.

DYNAMIC TOPOGRAPHY AND GEOSTROPHIC CIRCULATION

The geopotential topography of the sea surface with respect to 1,000 decibars (Fig. 2) shows the geostrophic flow at the sea surface relative to any motion at a depth of approximately 1,000 m. (For a general account of the geostrophic method see, for example, Von Arx, 1962, Ch. 9.) This particular reference surface was chosen partly to permit comparison with the geostrophic circulation shown by Garner (1967a) for the southern Hikurangi Trench region and partly because less data were available for deeper reference surfaces. The geopotential topography with respect to 500, 1,500, 2,000, and 2,500 decibars was examined; differences using these reference surfaces instead of 1,000 decibars were not significant.

The dynamic overall structure was very weak, but the strongest geostrophic flow was in the west of the survey area. In the north-west, the flow was directed north-eastwards. South of this region two topographic troughs had geopotential anomalies of less than 1.4 dyn. m and, south of these again, anomalies somewhat greater than 1.4 dyn. m were found. A ridge separated the two troughs and connected the elevated regions lying to the north and south.

The north-easterly flow of water (indicated by the 1.5 dyn. m contour in Fig. 2) is maintained by water from a region between north and north-west of East Cape. A later hydrological survey in this series, conducted in an area north-west of New Zealand, showed a 1.5 dyn. m contour extending south-westwards past North Cape (Garner, 1970). It is likely that this contour approximately parallels the coast and continues through the survey area as shown in Fig. 2. If this is so, a generally south-easterly current along the east coast of the Auckland Peninsula is indicated. This current would be deflected to the north-east by the eastern Bay of Plenty coastline. The existence of such a current has previously been suggested by Brodie (1960) from drift-card movements. He named it the East Auckland Current.

The two topographic troughs shown south-east of East Cape in Fig. 2 may represent cyclonic eddies associated with the north-easterly deflection of the East Auckland Current. The geopotential anomalies found to the south of these troughs are comparable with those found in the same region by Garner (1967a), who also noted an extensive, anticyclonic eddy centred over the Hikurangi Trench east of Cape Palliser; dynamic elevations at the centre exceeded 1.6 dyn. m.

If the results of the two surveys can be considered as synoptic, this large, anticyclonic eddy would represent water which had separated from the East Auckland Current on being deflected to the northeast.

An analogy may be drawn between the situation described above and that found off the east coast of Australia. There, the East Australian Current flows south to between latitudes 30° and $35^{\circ}S$ where it turns to the east. In the process of turning, large anticyclonic eddies are shed off and these drift south along the Australian coast (Wyrtki, 1962a, Fig. 1; Hamon, 1965, Fig. 1).

As mentioned earlier, one aim of the present cruise was to determine the source of that subtropical water appearing in plots of surface properties as a tongue of comparatively warm and saline water extending southwards of the east coast of North Island, e.g., Burling (1961), Garner and Ridgway (1965), Garner (1967a). This feature was associated by Fleming (1952) with a south-going movement of water which he described as the East Cape Current. The present survey gives no evidence of any direct flow of water from the East Auckland Current past East Cape, and the vertical cross sections of temperature and salinity constructed from the data obtained on 5–6 November 1965 (Fig. 11) show no structural evidence of any significant geostrophic flow normal to the sections. The geopotential anomalies derived for these stations (see Appendix) may be extrapolated to 1,000 m, and the values referred to this depth are found to be typical of those in the western topographic trough shown in Fig. 2 rather than of the more elevated regions characterising the flow of warm water.

If the anticyclonic eddy found by Garner (1967a) represented water which had earlier separated from the East Auckland Current, then the East Cape Current can be thought of as the integration over a period of the intermittent southward movement of such eddies.

SURFACE TEMPERATURE AND SALINITY

Surface isotherms and isohalines are shown in Figs 3 and 4. The contour patterns are rather diffuse, although the intrusion of comparatively warm, saline water from the north-west and north is

FIG. 4. Distribution of surface isohalines (‰).

illustrated by the 20°c and 35.5% isolines. The shape and position of the 35.6% isohaline as shown in Fig. 4 is somewhat subjective and may be modified when further data are available from the northwest of the survey area.

Surface temperature and salinity ranged from 18.0° c and 35.2% in the south to 21° c and 35.6% in the north. In the southern Hikurangi Trench region (Garner, 1967a) these surface properties ranged from 15° c and 34.5% in the south to 21° c and 35.6% in the north. The similarity between the values found in the north of both survey areas is striking and suggests that the areas are similar hydrologically. The eddy described by Garner contained essentially the same water type as that

sampled in the present survey and derived as suggested in the previous section.

UPPER MIXED LAYER

The presence of an upper mixed layer in which the temperature remains almost constant is clearly indicated by the bathythermograph traces reproduced in Fig. 9. This layer was noted at all stations, but the depth of mixing varied as illustrated in Fig. 10, which shows the bathymetry of the mixed layer depth. Some relationship between this bathymetry and the geopotential topography of the sea surface (Fig. 2) is evident. The mixed layer was deepest in the north-west of the survey area where

FIG. 5. Distribution of isohalines of minimum salinity. Contour values should be increased by 34%.

the geopotential anomalies are highest and was shallowest in those regions with topographic troughs. This relationship suggests that the depth of the upper mixed layer is controlled by the dynamics of flow rather than by local mixing agencies and reflects the geostrophic balance of the density structure and the velocity field (see, for example, Defant, 1961, p. 464).

SUBSURFACE TEMPERATURES

The vertical distribution of temperature along two cross sections is illustrated in Figs 6 and 7.

In the north-south section (Fig. 6) a well developed thermocline existed at depths between 50 and 100 m except in the region of Sta. D 420, where the thermocline deepened. With this exception the isotherms within the thermocline were almost horizontal.

Below the thermocline and down to a depth of 1,600 m, where the temperature was approximately 3°c, the intermediate isotherms showed marked departures from the horizontal. Since the density of sea water is mainly a function of temperature, the slope of isotherms will approximate that of isopycnals and will consequently give an indication of components of geostrophic flow normal to the section. Between Sta. D 416 and D 419 in the north the isotherm slope indicates an east-going component in the geostrophic flow between approximately 100 and 1,500 m. South of Sta. D 419 the mean isotherm slope indicates a west-going component

FIG. 6. Vertical meridional cross sections of temperature (°c) and salinity (‰).

FIG. 7. Vertical zonal cross sections of temperature (°c) and salinity (%).

120

140 160 180

DEGREES C

0			ing.	1.5	50.	25
20	1 . 1	.77	111	+ .	11.	1111
40 -	+	1.1.1	1 / T (7	T	1000
60-1	1	TTII		111-	Aint	11 11
80	1	111	11.	4	1.111	1
100-			1	1111	1	
120		1111	11		11	titi
140	1111	11111		1.11	1111	1
180	1111	1111	1.1		1111	11.6.1
100	1.8.8	12.2	11	1.1.1.	-	1
100			· t· L		1.11	:
	the state of the s	- m - 1 -		· · ···].		
40. Li-	4	1	1.1	1000		

DEGREES C

DEGREES C

FIG. 9.-continued.

19

FIG. 10. Contours of the depth of the mixed layer. Values expressed in metres.

of the geostrophic flow below the thermocline extending to a depth of 1,600 m. Since the surfacewater temperature falls towards the south the isotherms will reverse their slope eventually and lead towards the surface south of the survey area.

The east-west temperature section (Fig. 7) also shows a well developed thermocline between 50 and 100 m. Isotherms below the thermocline all show significant departures from the horizontal. Between Sta. D 401 and D 402, at the western end of the section, the slope of the isotherms indicates a relative south-going component in the geostrophic flow below 200 m and extending at least to 2,000 m. To the east of Sta. D 402 the isotherm slope is reversed and a relative north-going component in the geostrophic flow is indicated. This component is present below about 100 m and extends to a depth of 1,700 m or more.

SUBSURFACE SALINITY

The salinity structure in both cross sections (Figs 6, 7) was governed by the temperature structure. This is shown by the manner in which isohalines follow the isotherms in the corresponding temperature cross sections. No subsurface salinity maximum existed, the salinity decreasing uniformly from the surface to a salinity minimum which represents the core of Antarctic Intermediate Water at depths of 900 to 1,100 m. Below this core layer salinity gradually increased.

Within the core layer, salinity increased from north to south in the meridional cross section

FIG. 11. Vertical meridional cross section of temperature (°c) and salinity (%). Data obtained from stations occupied on 5-6 November 1965.

TABLE 2. M	ean Vertical	Sounding	Velocity
------------	--------------	----------	----------

Corrections (m) to be added algebraically to echo soundings from machines calibrated at 1,500 m sec^{-1} derived from data given in Appendix. Corrections are shown for two stations together with appropriate area corrections from Matthews' Tables.

	Stati	ion D 392	Stati	on D 416	Matthews (Area 41)		
Depth (m)	MVSV m sec ⁻¹	Correction for Sounder Set at 1,500 m sec ⁻¹	MVSV m sec ⁻¹	Correction for Sounder Set at 1,500 m sec ⁻¹	MVSV m sec ⁻¹	Correction for Sounder Set at 1,500 m sec ⁻¹	
200	1,511	+ 1	1,516	+ 2	1,530	+ 4	
400	1,507	+ 2	1,510	+3	1,514	+ 4	
600	1,503	+ 1	1,506	+ 2	1,504	+ 2	
800	1,500	0	1,503	+ 2	1,499	- 1	
1,000	1,498	- 1	1,500	0	1,490	- 3	
1,200	1,490	- 5	1,490	- 2	1,494	- 2	
1,400	1,495	- 5	1,490	- 4	1,493	- 0	
1,000	1,495		1 /0/	- 7	1,492	-11	
2,000	1 493	9	1 494	8	1 491	-12	
2,000	1,493	-10	1 494	_ 9	1 492	-12	
2,400	1,494	-10	1,494	-10	1,492	$-1\overline{3}$	

(Fig. 6) and from east to west in the zonal cross section (Fig. 7). This increase in salinity was accompanied by an increase in the depth of the layer from 1,000 m to an estimated 1,120 m in the meridional section and from 900 m to 1,100 m in the zonal section.

ANTARCTIC INTERMEDIATE WATER

The areal distribution of the core layer of Antarctic Intermediate Water is shown in Fig. 5. A well defined tongue of low salinity water (> 34.4%) is located in the north-east of the survey area. Antarctic Intermediate Water with salinity less than 34.4% was shown to exist north of New Zealand by Wyrtki (1962b) who postulated that this water comes from a strong northward flow of Antarctic Intermediate Water around the eastern end of Chatham Rise. Garner (1962) has discussed the predominant effect of bottom topography in controlling the circulation of Antarctic Intermediate Water and has described a tongue of such water (34.5%) extending southwards off the east coast of North Island.

The tongue of Antarctic Intermediate Water extending south-eastwards in the present survey shows that the flow of this water, after being deflected by the Chatham Rise, is directed towards the south.

SOUND VELOCITY

A meridional cross section showing the vertical distribution of sound velocity is featured in Fig. 8. No subsurface maximum in the sound velocity was present, the sound velocities decreasing with depth until minimum values, representing the SOFAR channel, were reached. The axis of the channel lay at a depth of approximately 1,400 m.

The minimum sound velocity increases from north to south along the section.

Throughout the survey area in general, sound velocity in the SOFAR minimum layer was highest in the west and decreased towards the east. Sound velocities within this layer ranged from $1,484.8 \text{ m sec}^{-1}$ at Sta. D 405 to $1,488.9 \text{ m sec}^{-1}$ at Sta. D 402.

The configuration of the SOFAR channel around New Zealand has been described by Garner (1967c), but for the area covered by this survey few data were available. Sound velocities determined here supplement Garner's work and define the detail of the SOFAR channel configuration within the survey area.

ECHO SOUNDER CORRECTIONS

Echo sounders are usually calibrated for an assumed velocity of sound in sea water of $1,500 \text{ m sec}^{-1}$. Errors in depth resulting from this assumption are compensated by applying corrections according to Matthews' tables (Matthews, 1939). The sound velocities shown here allow the velocity correction of echo soundings to be computed directly for comparison with those obtained by Matthews' tables.

Such computations have been made for two stations (Sta. D 416 and D 392) located in the north and south respectively of the survey area (Table 2). Corrections according to Matthews' tables are also shown. The corrections derived from the survey data are slightly smaller than those given by Matthews, confirming a trend found in the two previous surveys of this series (Garner, 1967a, b). This suggests that the redetermination of sound velocity corrections applicable to the New Zealand region as a whole may be desirable.

ACKNOWLEDGMENTS

The writer appreciates the assistance given in the field by Th. J. Houtman, E. J. Barnes, W. Main, and I. D. Slater of the New Zealand Oceanographic Institute and by the officers and crew of m.v. *Taranui* commanded by Captain R. D. Matheson. Drawings were prepared for publication under the supervision of Mr C. T. T. Webb, Chief Cartographer, Information Service. Temperature and depth calculations were made on the Treasury IBM 650 computer through the Applied Mathematics Division, DSIR.

Particular thanks are expressed to the writer's colleague, Dr D. M. Garner, for his assistance with the manuscript.

REFERENCES

- BARK, L. S.; GANSON, P. P.; MEISTER, N. A. 1964: "Tables of the Velocity of Sound in Sea Water." Pergamon Press, London. 180 pp.
- BARKER, P. H.; KIBBLEWHITE, A. C. 1965: Physical Oceano-graphic Data from *Tui* Cruise, 1962. N.Z. Jl Sci. 8: 604-34.
- BRODIE, J. W. 1960: Coastal Surface Currents around New Zealand. N.Z. Jl Geol. Geophys. 3 (2): 235-52.
- BROWN, N. L.; HAMON, B. V. 1961: An Inductive Salinometer. Deep Sea Res. 8 (1): 65-75.
- BURLING, R. W. 1961: Hydrology of Circumpolar Waters South of New Zealand. Bull. N.Z. Dep. scient, ind. Res. 143.65 pp.
- DEFANT, A. 1961: "Physical Oceanography. Vol. 1", Pergamon Press, London. 729 pp.
- DOBROVOLSKY, A. D.; LEONTYEVA, V. V.; KOKSA, V. I. 1960: On the Characteristic Structure and Water Masses of the Western and Central Parts of the Pacific Ocean. Trudy Inst. Okeanol. (Moskva) 40: 47-57.
- EGER, D. T. 1962: A Program for Automatic Temperature and Depth Calculations on the IBM 650 Computer. Rep. mar. Lab. Univ. Miami 62 (3): 1-40.
- FLEMING, C. A. 1952: The Seas Between. Pp. 102-6 in Simpson, F. A. "The Antarctic Today". N.Z. Antarctic Society and A. H. and A. W. Reed, Wellington. 389 pp.

- GARNER, D. M. 1962: Analysis of Hydrological Observations in the New Zealand Region 1874-1955. Bull. N.Z. Dep.
- In the New Zealand Region 18/4–1955, Bull, N.Z. Dep. scient, ind. Res. 144, 45 pp. —1967a: Hydrology of the Southern Hikurangi Trench Region, Bull, N.Z. Dep. scient, ind. Res. 177, 36 pp. —1967b: Hydrology of the South-east Tasman, Bull. N.Z. Dep. scient, ind. Res. 181, 40 pp. —1967c: Occanic Sound Channels around New Zea-

- and, N.Z. JI mar. Freshwat, Res. 1: 3-15. —1970: Hydrological Studies in the New Zealand Region 1966 and 1967. Bull. N.Z. Dep. scient. ind. Res. 202. 51 pp.
- -RIDGWAY, N. M. 1965: Hydrology of N.Z. Offshore Waters. Bull, N.Z. Dep. scient. ind. Res. 162. 63 pp.
- HAMON, B. V. 1965: The East Australian Current, 1960-1964. Deep Sea Res. 12 (6): 899–921.
- LAFOND, E. C. 1951: Processing Oceanographic Data. Publs
- U.S. hydrogr. Off. 614.
 MATTHEWS, D. J. 1939: Tables of the Velocity of Sound in Pure Water and Sea Water for use in Echo-Sounding and Sound-Ranging. Publs Admiralty hydrogr. Dept. 282: 1-52
- WYRTKI, K. 1962a: The Subsurface Water Masses in the Western South Pacific Ocean. Aust. J. mar. Freshwat. Res. 13(1): 18-47.
- -1962b: Geopotential Topographies and Associated Circulation in the Western South Pacific Ocean. *Ibid.*
- Chromation in the Western South Pacific Ocean. *Ibid. 13* (2): 89–105.
 Von Arx, W. S. 1962: "An Introduction to Physical Oceano-graphy." Adison-Wesley Pub. Co., Reading, Mass. 422 pp.

APPENDIX

STATION DATA

Observed and computed station data are listed on the following pages. Station circumstances are shown in Table 1. The abbreviations used as table headings are:

- D sampling depth in metres.
- WAD wire angle depth in metres. These are shown for stations D 417, D 418, and D 421 (see text under "Data Collection").
 - T temperature in °C.
 - S salinity in ‰.
 - σ_t density reduced to surface pressure isothermally.
- $\Sigma \Delta D$ anomaly of the geopotential distance from the sea surface to the sample depth in dynamic metres.
 - C in situ sound velocity in m sec⁻¹.

D	Т	S	σ_t	$\Sigma\Delta D$	С	D	Т	S	σ_t	ΣΔD	С
<u>D389</u>						<u>D392</u> (cont'd)				
0 49 129 178 225 290	18.68 15.31 13.56 12.56 11.85 11.12	35.39 35.32 35.21 35.11 35.02 34.94	25.42 26.17 26.46 26.58 26.65 26.73 26.73	.00 .11 .25 .32 .39 .49	1518.6 1509.0 1504.6 1502.0 1500.0 1498.2	500 650 800 900 1000 1100	9.28 7.80 7.08 6.57 5.75 5.12	34.71 34.58 34.50 .34.47 34.45 34.45 34.45	26.76 26.99 27.04 27.11 27.17 27.25	•83 1.01 1.19 1.30 1.41 1.51	1495.0 1491.6 1491.1 1490.7 1489.1 1488.3
397 532 665 730 809	9.92 8.71 7.84 7.06 6.61	34.81 34.65 34.58 34.52 34.50	26.84 26.91 26.99 27.05 27.10	. 59 . 63 . 81 . 97 1.04 1.13	1497.2 1495.7 1493.0 1492.0 1490.1 1489.6	1 300 1 400 1 500 1 7 50 2000	4.78 4.24 3.72 3.37 2.77 2.34	34.40 34.47 34.49 34.52 34.58 34.62	27.30 27.36 27.43 27.49 27.59 27.66	1.60 1.69 1.77 1.85 1.98 2.15	1488.5 1487.8 1487.2 1487.3 1488.1 1491.2
918 1010 1120 1248	5.89 5.43 4.92 4.35	34.47 34.46 34.47 34.48	27.17 27.22 27.29 27.36	1.24 1.34 1.44 1.56	1488.4 1487.9 1487.6 1487.3	2500 <u>1393</u>	2.06	34.65	27.71	2,42	1498.3
1476 1693 D390	3.36 2.79	34.55 34.60	27.51 27.61	1.73	1486.9 1488.1	0 23 46 75	19.76 19.77 19.66 15.48	35.47 35.47 35.45 35.38	25.20 25.20 25.21 26.18	.00 .06 .12 .20	1521.7 1522.1 1522.1 1510.0
0 12 31 67	19.65 19.43 16.90	35.47 35.47 35.41 35.39	25.2 3 25.29 25.87 26.27	.00 .03 .08	1521.4 1521.0 1513.7 1508.7	91 195 278 415	14.67 12.71 11.54 9.80	35.36 35.17 35.00 34.76	26.34 26.60 26.70 26.81	.22 .39 .51 .70	1507.8 1502.7 1499.8 1495.5
89 147 188 247 328	14.66 13.61 13.43 13.01	35.37 35.29 35.27 35.22 35.22	26.35 26.51 26.53 26.58 26.64	.19 .28 .35 .44	1507.6 1505.0 1505.2 1504.5 1503.3	629 742 849 906	6.95 7.98 7.21 6.58 6.12 5.38	34.07 34.56 34.51 34.47 34.45 34.45	20.89 26.95 27.02 27.08 27.12	.02 .97 1.10 1.22 1.29	1493.8 1492.0 1490.6 1490.0 1489.0
501 690 789 857	10.44 8.56 7.66 7.15	34.84 34.63 34.54 34.50 24.60	26.77 26.92 26.98 27.02	.81 1.06 1.19 1.27	1499.1 1495.1 1493.1 1492.3	1 10 4 1 17 3 1 278 1 550	4.96 4.66 4.09 3.13	34.44 34.44 34.46 34.52	27.26 27.29 27.37 27.51	1.49 1.55 1.64 1.85	1487.4 1487.2 1486.7 1487.0
9955 1131 1185 1238 1395	5.18 4.90 4.67 3.80	34.45 34.45 34.46 34.46 34.49	27.11 27.24 27.28 27.31 27.42	1.56 1.61 1.66 1.79	1490.8 1488.9 1488.6 1488.5 1487.4	2139 <u>D394</u>	2.64 2.33	34.58	27.60 27.66	2.01 2.21	1489.2 1493.5
1453 1695 1846 D391	3.56 2.85 2.63	34.51 34.57 34.60	27.46 27.58 27.62	1.84 2.01 2.10	1487.6 1488.4 1489.9	0 22 44 66 78	19.58 19.05 18.51 16.85 13.06	35.21 35.21 35.21 35.18 35.08	25.05 25.19 25.32 25.71 26.46	.00 .06 .12 .18 .20	1520.9 1519.8 1518.5 1514.0 1501.9
0 24 49 73 98	18.97 19.30 16.98 15.43 14.90	35.44 35.44 35.44 35.43 35.39	25,38 25,30 25,88 26,23 26,31	.00 .06 .12 .17 .22	1519.4 1520.7 1514.4 1509.9 1508.6	135 158 308 441 569	12.09 11.81 10.21 8.93 7.91	35.04 35.02 34.79 34.64 34.55	26.62 26.66 26.77 26.87 26.87	.29 .32 .53 .71 .86	1502.7 1498.7 1495.3 1492.6 1490.6
147 196 245 343 490	13.64 13.09 12.36 10.44 8.73	35.29 35.24 35.14 34.86 34.65	26.50 26.58 26.65 26.79 26.91	. 30 . 37 . 45 . 58 . 78	1505.2 1504.1 1502.2 1496.8 1492.6	687 786 871 952 1118	7.33 6.71 6.28 5.75 4.79	34.50 34.47 34.46 34.45 34.45	27.00 27.06 27.11 27.12 27.18	1.01 1.12 1.22 1.30 1.46	1490.2 1489.4 1489.1 1488.2 1487.1
637 784 882 980 1078	7.64 6.72 5.96 5.31 4.75	34.56 34.51 34.48 34.46 34.47	27.00 27.09 27.17 27.23 27.31	.96 1.13 1.23 1.33 1.43	1490.8 1489.5 1487.9 1486.8 1486.3	1217 1286 1489 1694	4.21 3.92 3.16 2.65	34.46 34.48 34.52 34.57	27.25 27.40 27.51 27.60	1.55 1.61 1.76 1.89	1 486.2 1 486.1 1 486.2 1 487.5
1 17 6 1 27 4 1 37 8 1 470 1 7 1 5	4.30 3.92 3.51 3.16 2.75	34.49 34.51 34.52 34.55 34.60	27.37 27.43 27.48 27.53 27.61	1.52 1.60 1.68 1.75 1.83	1485.9 1486.0 1485.9 1486.0 1488.3	0 24 49	19.52 19.24 18.99	35.32 35.30 35.28	25.15 25.21 25.26	.00 .07 .14	1520.8 1520.5 1520.1
2450 D392	2.12	34.66	27.61	2.42	1497.8	89 141 193	13.62 12.64 12.12	35.18 35.11 35.05	26.42 26.57 26.62	. 19 . 22 . 31 . 38	1515.1 1504.0 1501.5 1500.5
0 25 50 75 100	19.67 19.16 18.64 15.66 14.79	35.42 35.39 35.35 35.40 35.37	25.20 25.30 25.40 26.15 26.32	.00 .07 .13 .19 .24	1521.4 1520.3 1519.2 1510.6 1508.3	236 306 460 583 726 828	11.64 10.45 8.74 7.76 6.83 6.58	34.98 34.81 34.61 34.51 34.44 34.42	26.67 26.75 26.87 26.95 27.02 27.07	.45 .55 .75 .90 1.09 1.20	1499.5 1496.1 1492.1 1490.1 1488.9 1489.6
150 200 250 350	13.71 12.99 12.62 11.41	35.25 35.19 35.14 34.98	26.46 26.56 26.60 26.71	. 32 . 40 . 48 . 62	1505.4 1503.7 1503.2 1500.4	910 991 1080	5.74 5.38 4.78	34.41 34.42 34.42	27.14 27.19 27.26	1.29 1.38 1.46	1487.5 1487.3 1485.7

D	Т	S	$\sigma_{\rm t}$	$\Sigma \Delta D$	С	D	Т	S	σ_t	$\Sigma \Delta D$	С
<u>D395</u>	(cont'd)					<u>D399</u>					
1166 1269 1346	4.45 3.92 3.56	34.43 34.45 34.47	27.31 27.38 27.43	1.54 1.63 1.69	1486.4 1485.9 1485.6	0 22 4)	19.54 19.62 19.12	35.40 35.40 35.40	25.21 25.19 25.31	.00 .06 .12	1521.0 1521.6 1520.5
1565 1790 2245	2.99 2.50 2.32	34.53 34.58 34.61	27.53 27.62 27.66	1.84 1.99 2.25	1486.8 1488.4 1495.2	65 87 130	16.25 15.16 13.76 13.08	35.38 35.33 35.23 35.15	26.00 26.21 26.43 26.51	.17 .21 .29	1512.2 1508.9 1505.1
<u>D396</u>						218 286	12.54	35.09	26.57	• 43 • 53	1502.4
0 20 39	19.74 19.74 17.91	35.44 35.44 35.44	25.19 25.19 25.33	.00 .06 .11	1521.6 1521.9 1516.9	353 442 536	10.75 9.69 8.74	34.91 34.80 34.68	26.77 26.87 26.93	.61 .74 .85	1498.0 1495.6 1493.4
59 79 118	16.90 15.31 14.14	35.45 35.43 35.30	25.90 26.25 26.41	.16 .19 .26	1514.2 1509.6 1506.3	670 784 1000	7.68 6.77 5.63	34.57 34.48 34.44	27.00 27.06 27.18	1.01 1.14 1.38	1491.4 1489.6 1488.5
147 168 270 430	13.49 12.97 12.12 10.06	35.22 35.16 35.07 34.77	26.48 26.54 26.64 26.78	.31 .34 .50 .72	1507.8 1503.1 1501.7 1496.6	1155 1229 1447 1684	4.88 4.50 3.53 2.79	34•45 34•46 34•50 34•56	27.27 27.33 27.46 27.58	1.53 1.60 1.77 1.94	1488.0 1487.6 1487.1 1487.8
586 685 778	8.35 7.38 6.62	34.57 34.48 34.43	26.91 26.98 27.04	•93 1•05 1•16	1492.6 1490.4 1488.9	2331 D400	2.18	34.60	27.66	2,32	1495.9
952	5.50	34.40	27.16	1.34	1487.0	0.	20.19	35.50	25.11	.00	1523.0
D <u>3</u> 97 0	19.96	35.39	25.09	.00	1522.2	20 40 60	20.21 19.88 17.39	35.50 35.50 35.42	25.11 25.19 25.76	.06 .11 .16	1523.3 1522.6 1515.8
22 45 67	19.58 18.74 15.32	35.39 35.39 35.35	25.19 25.40 26.19	.06 .12 .17	1521.6 1519.4 1509.4	80 120 191	15.97 15.07 14.33	35.35 35.36 35.30	26.04 26.25 26.37	•21 •28 •41	1511.7 1509.4 1508.1
90 135 181	14.05 13.18 12.69	35.30 35.23 35.16	26.42 26.55 26.60	.21 .28 .35	1505.5 1503.3 1502.4	225 292 441	13.92 12.65 10.92	35.27 35.15 34.94	26.43 26.60 26.76	• 47 • 57 • 79	1507.3 1507.4 1500.1
227 460 602	12.38 10.44 8.88	35.14 34.89 34.69	26.65 26.81 26.92	.42 .75 .94	1502.0 1498.7 1495.1	528 663 746	9.46 8.20 7.75	34.76 34.61 34.56	26.88 26.96 26.98	•91 1.08 1.18	1496.0 1493.3 1492.9
745 841 938	7.41 6.74 5.94	34.52 34.47 34.45	27.00 27.06 27.15	1.11	1491.4 1480.5 1488.8	892 970 1177	6.39 5.83 5.02	34.48 34.47 34.47	27.11 27.18 27.28	1.35 1.43 1.63	1489.9 1488.9
1034 1130 1226	5.28 4.64 4.07	34.44 34.44 34.46	27.22 27.19 27.37	1.43 1.52 1.60	1487.6 1486.6 1485.7	1240 1429 1613	4.55 3.74 3.09	34.48 34.52 34.57	27.34 27.45 27.56	1.69	1488.0 1487.8 1488.1
1323 1421 1662	3.76 3.41 2.86	34.47 34.49 34.55	27.41 27.46 27.56	1.68 1.76 1.92	1486.0 1486.1 1487.7	1989 D401	2.29	34.64	27.68	2.19	1490.9
1907 2393	2.53 2.18	34.60 34.66	27.63 27.71	2.07 2.34	1490.5 1497.1	0 20	20.45	35.50 35.50	25.04	.00	1523.7
<u>D398</u>						40 61	20.38 20.15	35.50	25.06	. 12	1524.0
0 21 42	19.95 20.02 19.79	35.46 35.46 35.46	25.15 25.13 25.19	.00 .06 .12	1522.3 1522.8 1522.5	81 121 172	18.11 16.21 15.32	35.49 35.43 35.38	25.64 26.05 26.21	.23 .32 .42	1520.3 1513.1 1511.0
64 85 127	19.40 15.66 13.94	35.45 35.29 35.22	25.28 26.07 26.38	.18 .23 .31	1521.7 1509.6 1505.7	224 278 444	14.51 12.47 10.47	35.31 35.09 34.88	26.34 26.61 26.80	• 51 • 60 • 84	1509.2 1503.1 1498.5
168 194 297	13.35 12.90 11.89	35.20 35.16 35.03	26.50	• 37 • 41 • 57	1503.3 1501.3	596 697 895	8.92 8.01 6.53	34.67 34.59 34.51	26.89 26.97 27.12	1.04 1.17 1.39	1495.0 1493.0 1490.5
424 512 628	8.77 7.87	34.92 34.65 34.54	26.90 26.95	.86 1.00	1493.1 1491.5	960 1109 1228	5.09 4.41	34.47 34.47 34.48	27.16 27.27 27.35	1.46	1489.6 1488.2 1487.2
708 791 869	6.75 6.10	34.48 34.45	27.07 27.13	1.19	1489.6	1317 1570 1701	4.04 3.17 2.72	34.51 34.57 34.60	27.41 27.55 27.61	1.79 1.97 2.06	1487.2 1487.7 1487.9
949 1069 1133	5.05	34.45 34.45 34.46	27.25 27.30	1.48	1487.3	2051	1.94	34.67	27.73	2.24	1490.4
1302 1473 1703	3.24 2.53	34.49 34.53 34.58	27.40 27.51 27.61	1.83	1486.3 1487.2	0	20.22	35.59	25.17	.00	1523.2

D	Т	S	σ_t	$\Sigma \Delta D$	С	D	Т	S	σ_t	$\Sigma\Delta D$	С
p4 <u>02</u>	(contd)					D407					
49 74 98 147 198 246 344 492 640 788 886 985 1083 1182 1280 1379 1477 1723 1978	$19.97 \\ 17.17 \\ 16.32 \\ 15.69 \\ 15.52 \\ 15.34 \\ 13.87 \\ 11.23 \\ 9.20 \\ 7.75 \\ 6.97 \\ 6.35 \\ 6.00 \\ 5.53 \\ 4.27 \\ 3.85 \\ 3.12 \\ 2.46 \\ \end{bmatrix}$	35.61 35.55 35.55 35.51 35.49 34.56 34.72 34.46 34.46 34.46 34.46 34.57 34.57 34.65	25.25 25.91 26.10 26.23 26.26 26.29 26.48 26.99 26.99 27.06 27.11 27.15 27.21 27.31 27.38 27.44 27.55 27.68	.14 .20 .25 .34 .43 .52 .69 1.12 1.31 1.42 1.53 1.64 1.74 1.84 1.92 2.00 2.18 2.34	1523.3 1515.6 1513.3 1516.1 1512.4 1512.5 1509.1 1502.1 1496.8 1493.6 1493.6 1491.2 1491.2 1491.2 1491.0 1489.6 1489.9 1488.9 1480.0 1491.4	0 21 42 66 92 258 335 412 507 572 674 702 770 810 862 979 1048	19.95 20.50 20.46 20.04 16.37 13.10 12.07 10.82 9.99 9.36 8.59 8.10 7.47 7.05 6.67 5.65 5.04	35.54 35.54 35.54 35.54 35.57 35.19 34.80 34.80 34.63 34.63 34.57 34.50 34.46 34.46 34.46 34.46	25.21 25.06 25.07 25.19 26.04 26.54 26.65 26.76 26.82 26.91 26.94 26.98 26.91 26.98 27.06 27.19 27.29	.00 .06 .12 .13 .25 .46 .58 .69 .82 .91 1.04 1.07 1.16 1.21 1.27 1.39 1.46	1522.3 1524.1 1524.4 1524.2 1523.6 1513.3 1505.1 1502.7 1499.3 1497.8 1496.1 1493.5 1492.1 1490.5 1492.1 1490.5 1488.3 1487.0
D 403						D408	00.08			00	1500 5
0 24 49 73 97 146 195 244 341 502 707 892	20.38 20.38 19.55 16.88 15.97 14.89 14.29 13.70 12.00 9.94 8.33 6.50	35.51 35.32 35.47 35.45 35.39 35.34 35.27 35.07 34.82 34.62 34.48	25.07 25.08 25.26 25.92 26.12 26.32 26.41 26.48 26.66 26.84 26.66 26.84 26.95 27.10	.00 .07 .14 .20 .25 .34 .42 .50 .65 .74 1.00 1.24	1523.5 1523.9 1524.5 1514.4 1512.1 1509.4 1508.2 1508.2 1502.5 1497.5 1494.5 1490.4	0 15 30 45 60 153 211 301 391 536 D410	20.08 20.11 20.07 20.05 20.02 17.02 14.33 12.57 10.91 9.09	35.60 35.60 35.59 35.59 35.49 35.33 35.13 34.90 34.67	25.22 25.21 25.22 25.23 25.90 26.39 26.60 26.73 26.86	.00 .04 .08 .12 .17 .40 .51 .65 .79 .98	1522.7 1523.0 1523.2 1523.3 1523.5 1516.2 1508.4 1503.8 1499.2 1494.7
D404						0 18	20.23	35.60 35.60	25.18 25.17	.00	1532.2
0 17 35 48 63 343 382 420 480 502 540 580 970	20.07 20.11 19.94 19.63 16.58 10.27 9.82 9.42 9.42 9.06 8.60 8.26 8.12 7.47	35.48 35.48 35.47 35.41 34.89 34.82 34.77 34.71 34.66 34.66 34.66 34.61 34.57	25.13 25.12 25.15 25.95 26.85 26.85 26.89 26.90 26.90 26.90 26.96 26.97 27.04	.00 .05 .10 .14 .17 .64 .69 .74 .82 .84 .89 .94 1.40	1522.6 1523.0 1522.9 1512.9 1513.3 1496.2 1495.0 1494.2 1492.3 1491.5 1491.6 1492.3	35 55 74 111 150 185 262 375 487 600 675 750 825 900 976	20.24 16.82 16.30 15.71 15.20 14.70 13.21 11.70 9.82 8.55 7.77 7.08 6.52 6.13 5.54	35.60 35.53 35.55 35.46 35.39 35.21 35.04 34.63 34.55 34.45 34.45 34.45	25.17 25.98 26.09 26.22 26.30 26.36 26.53 26.70 26.82 26.92 26.98 27.03 27.07 27.12	.10 .23 .30 .44 .56 .73 .89 1.04 1.13 1.25 1.34 1.42 1.50	1523.8 1520.0 1512.7 1511.4 1510.5 1509.3 1509.3 1505.4 1502.0 1496.8 1493.7 1491.8 1490.3 1489.8 1488.8 1487.7
D40 <u>5</u>	10 71	35.28	25.07	00	1521 3	1051 1127	5.15	34.43 34.44	27.23	1.57	1487.3 1487.2
21 43 64 127 175 220 299 426 555 683 768 854 940 1027	().86 ().86 ().01 ().4.79 ().52 ().5	35.28 35.32 35.20 35.14 35.09 34.92 34.70 34.59 34.47 34.44 24.42 34.40 34.41	25.03 25.26 26.23 26.54 26.62 26.64 26.62 26.64 26.62 26.82 26.91 26.98 27.03 27.09 27.14 27.21	.06 .12 .17 .28 .35 .42 .53 .70 .87 1.03 1.13 1.22 1.32 1.40	1521.9 1520.1 1516.5 1502.9 1501.6 1501.6 1501.2 1498.8 1494.5 1492.4 1490.0 1489.4 1488.6 1487.6 1486.6 1486.6	1515 1500 1880 D411 0 13 20 45 60 90 120 120 120 150 217	19.87 19.88 19.98 19.92 19.82 19.81 18.19 16.38 15.92 14.77	34.47 34.53 34.59 35.49 35.49 35.49 35.49 35.49 35.49 35.45 35.38 35.38	27.40 27.50 27.62 25.19 25.16 25.18 25.20 25.20 25.20 25.59 25.97 26.06 26.26	.00 .04 .06 .13 .17 .25 .31 .38 .50	1400,5 1487.0 1490.0 1522.1 1522.4 1522.4 1522.5 1522.8 1518.6 1513.6 1512.6 1510.0
1196 1282 1492 1710 2202	4.55 4.05 3.66 3.11 2.66 2.30	34.44 34.46 34.51 34.57 34.63	27.29 27.36 27.41 27.51 27.59 27.67	1.40 1.56 1.63 1.78 1.92 2.20	1485.2 1484.8 1486.0 1487.8 1494.3	320 425 535 610 690 768	12.70 11.14 9.85 9.18 8.43 7.83	35.13 34.96 34.79 34.71 34.63 34.57	26.57 26.73 26.83 26.88 26.94 26.98	.65 .81 .96 1.06 1.16 1.25	1504.5 1500.8 1497.6 1496.2 1494.6 1493.6

D	Т	S	σ_t	$\Sigma\Delta D$	С	D	Т	S	σ_{t}	$\Sigma \Delta D$	С
D411 (cont'd)					D416					
848 925 1002 1080	7.36 6.94 6.55 6.27	34.53 34.50 34.49 34.48	27.02 27.06 27.10 27.13	1.35 1.44 1.53 1.61	1492.9 1492.6 1492.3 1492.5	0 25 50 75	20.70 20.22 20.20 17.54 15.94	35.58 35.57 35.57 35.53 35.49	25.03 25.16 25.16 25.82 26.16	.00 .07 .14 .21 .27	1524.4 1523.6 1523.9 1516.5 1512.0
D412						150	15.16	35.45	26.31 26.40	.36	1512.0
0 22 43 65 130 173	19.80 19.82 19.77 18.17 15.91 15.67	35.61 35.61 35.61 35.55 35.52 35.51	25.30 25.29 25.30 25.66 26.19 26.23	.00 .06 .12 .17 .31 .39	1521.9 1522.4 1522.5 1518.2 1512.4 1512.3	250 350 500 650 800 900	13.47 12.14 9.63 8.08 6.86 6.21	35.25 35.07 34.75 34.58 34.47 34.42 24.42	26.51 26.69 26.84 26.95 27.04 27.09	.53 .68 .89 1.08 1.26 1.38 1.48	1504.1 1503.1 1496.2 1492.6 1490.1 1489.1
217 303	15.55	35.50 35.41	26.25	. 47	1512.7	1100	4.94	34.41	27.24	1.58	1487.3
D413						1 300	3.83	34.47	27.41	1.76	1486.0
0 21 40 62 83	20.07 19.76 19.65 19.41 17.57	35.55 35.55 35.55 35.55 35.53	25.19 25.26 25.29 25.35 25.80	.00 .06 .11 .17 .22	1522.6 1522.0 1522.0 1521.7 1516.7	1 500 17 50 2000 2500	3.19 2.76 2.46 2.27	34.53 34.58 34.61 34.64	27.52 27.59 27.64 27.68	1.90 2.07 2.21 2.49	1486.6 1488.8 1491.6 1499.9
125 166 208 291	16.36 15.66 15.40 14.25	35.51 35.50 35.49 35.32	26.08 26.23 26.28 26.40	• 31 • 39 • 46 • 61	1513.8 1512.2 1512.1 1509.5	D417 WAD			05.00		
416 540 664 747 830 913	12.44 10.74 9.02 8.33 7.55 6.90	35.11 34.89 34.67 34.61 34.55 34.51	26.61 26.76 26.89 26.94 27.01 27.07	.81 1.00 1.17 1.28 1.38 1.47	1505.1 1501.1 1496.5 1495.2 1493.4 1492.2	0 25 49 74 98 197	20.42 20.53 20.53 17.80 16.19 14.74	35.54 35.55 35.54 35.52 35.51 35.42	25.08 25.06 25.05 25.74 26.11 26.37		
996 1079 1162 1245 1452 1659	6.40 5.77 5.14 4.76 3.77 2.96	34.49 34.47 34.47 34.48 34.55 34.65	27.12 27.18 27.26 27.31 27.47 27.63	1.57 1.66 1.74 1.81 1.98 2.12	1491.6 1490.5 1489.2 1489.0 1488.2 1488.3	492 640 788 985 1182 1256	13.27 10.45 8.48 6.87 5.00 4.39	35.24 34.88 34.63 34.50 34.43 34.44	26.94 26.80 26.93 27.06 27.25 27.32		
D ¹ +14						1352	3.74 3.40	34.47	27.41 27.46		
0	20.22	35.59	25.17	.00	1523.1	1932	2.87	34.59	27.61		
23 46 69 92	20.22 20.17 16.77 16.06	35.59 35.58 35.53 35.52 35.52	25.17 25.18 25.99 26.16 26.34	.06 .13 .19 .23	1523.5 1523.7 1514.1 1512.2 1511.6	2415 D418 WAD O	2.32	34.63	24.88		
184 230 322 460	15.34 14.80 13.35 10.80	35,48 35,42 35,24 34,91	26.28 26.36 26.53 26.76	. 40 . 48 . 64 . 84	1511.5 1510.4 1507.0 1500.0	17 33 52 103 140	20.82 20.79 20.75 15.43 13.74	35.44 35.44 35.44 35.26 35.20	24.90 24.91 24.92 26.09 26.41		
598 736 829 937	7.81 7.20 6.53	34.58 34.53 34.49	26.90 26.99 27.04 27.10	1.00 1.20 1.32 1.44	1493.0 1493.0 1492.1 1491.2	225 321 418 514	12.61 11.34 10.41 9.40	35.11 34.95 34.84 34.72	26.57 26.69 26.75 26.80		
1015 1105 1197 1289 1385 1611	5.45 5.02 4.43 4.08 3.28	34.46 34.46 34.48 34.50 3 ⁴ .55	27.22 27.27 27.35 27.40 27.52	1.61 1.70 1.79 1.87 2.04	1 489.5 1 489.3 1 488.3 1 488.5 1 488.7	643 771 964 1125 1286	8.33 7.54 7.25 6.66 5.89	34.61 34.53 34.50 34.45 34.42	26.94 26.99 27.01 27.05 27.13		
2302	2.05	34.61	27.05	2.10	1495.3	D'+19					
D41 <u>5</u>						0 21	20.29 19.64	35.42 35.41	25.02	.00	1523.1 1521.6
0 26 52 77 148 210 264 298 437	21.13 21.13 20.95 17.90 15.92 14.81 14.00 13.60 11.35	35 53 35 55 35 54 35 50 35 49 35 41 35 31 35 25 34 95	24.90 24.90 24.94 25.70 26.16 26.35 26.44 26.48 26.69	.00 .08 .16 .23 .38 .49 .58 .64 .85	1525.5 1525.9 1525.8 1517.6 1512.7 1510.1 1508.2 1507.4 1501.6	41 62 82 124 166 208 291 416 541	19.48 17.82 14.48 13.25 12.86 12.30 11.04 9.45 8.17	35.40 35.37 35.32 35.23 35.17 35.11 34.92 34.73 34.59	25.22 25.56 26.35 26.54 26.57 26.64 26.72 26.85 26.95	. 12 . 17 . 21 . 28 . 34 . 41 . 53 . 69 . 85	1521.6 1517.6 1506.8 1503.4 1502.6 1501.4 1498.2 1494.1 1491.2
616 830 917	8.94 6.80 6.02	34.66 34.46 3 ¹ 4.42	26.88 27.04 27.11	1.10 1.36 1.46	1486.4 1490.5 1488.8	666 749 832	6.71 6.20	34.50 34.46 34.43	27.00 27.06 27.10	1.09	1489.7 1488.8 1488.0

D	Т	S	σ_t	ΣΔD	С	D	Т	S	σ_{t}	$\Sigma \Delta D$
D419 (contd)					EAST C	APE STATIO	NS		
916 999 1082	5.60 5.22 4.96	34.42 34.42 34.43	27.17 27.21 27.25	1.27 1.36 1.44	1486.9 1486.8 1487.0	<u>D469</u>				
1165	4.54	34.45	27.31	1.51	1486.8	0	15.78	35.48	26.18	.00
1249	4.22	34.48	27.37	1.59	1486.8	18	15.29	35.47	26.29	.03
1408	3.56	34.52	27.47	1.71	1486.6	38	15.28	35.47	26.29	.07
2080	2.51	34.62	27.65	2.12	1493.0	77	15.18	35.47	26.31	.13
						115	14.81	35.42	26.36	.19
D420						153	14.25	35.37	26.44	.26
0	19.22	35.44	25.32	.00	1520,1	667	(1.01))***	20.00	• 00
18	19.23	35.44	25.32	.05	1520.4	<u>D</u> 470				
56	18.93	35.43	25.48	- 17	1519.9	0	15.75	35 49	26.20	.00
105	17.91	35.42	25.63	.27	1517.9	37	15.49	35.50	26.27	.06
139	15.95	35.39	26.08	.34	1512.6	62	15.19	35.49	26.33	.11
175	14.23	35.32	26.40	.41	1507.5	135	14.69	35.43	26.39	. 23
349	11.69	35.04	26.70	.68	1501.4	363	12.90	34.98	26.69	. 40
454	10.39	34.87	26.80	.82	1498.4	506	9.48	34.75	26.87	.77
557	9.27	34.75	26.90	.96	1495.8	675	7.67	34.58	27.01	• 94
266	8.09	34.63	26.99	1.13	1493.5	D471				
838	7.23	34.55	27.05	1.30	1492.4	10-471				
974	6.35	34.49	27.13	1.45	1491.0	0	15.55	35.46	26.22	.00
D/21						38	15.33	35.48	26.29	.07
0421						152	14.05	35.31	26.43	.26
WAD.						265	12.24	35.08	26.62	. 44
1 24.0	17 00	05 45	05 1.5			379	10.85	34.92	26.76	. 60
20	17.80	35.15	25.45			258	9.89	34.67	26.73	.87
39	17.48	35.16	25.54			150	0.,0	5.052	21.01	
59	17.30	35.17	25.59			D472				
79	15.75	35.19	25.96			0	15 24	35 30	26 24	00
158	12.89	35.12	26.53			44	15.16	35.42	26.28	.08
197	12.31	35.08	26.61			86	14.85	35.39	26.32	.15
276	11.61	35.01	26.69			170	13.30	35.22	26.52	.29
512	7.71	34.60	27.02			418	10.11	34.82	26.81	.40
630	7.00	34. 52	27.06			622	8.23	34.64	26.98	.91
788	6.84	34.51	27.08			826	6.89	34.52	27.08	1.14
946	6.16	34.47	27.14			D473				
1024	5.16	34.45	27.24			.2				
1300	3.57	34.52	27.47			0	15.04	35.37	26.27	.00
1857	2.53	34.60	27.63			36	14.93	35.39	26.31	.06
D422						145	13.36	35.11	26.62	. 22
						254	12.29	35.09	26.62	. 38
0	19 10	25 27	25 53	00	1517.1	363	10.50	34.87	26.78	. 53
23	18.11	35.37	25.55	.06	1517.2	727	7.59	34.57	27.02	.99
46	17.61	35.38	25.68	.11	1516.1	DUTL	1	5.051		• / /
91	14.32	35.34	26.40	. 20	1504.0	1)474				
182	13.16	35.26	26.58	. 33	1504.5	0	14.94	35.35	26.27	.00
465	11.43	35.00	26.72	.75	1502.4	43	14.77	35.38	26.33	.07
546	10.10	34.80	26.80	.87	1498.7	170	12.88	35.17	26.37	.15
637	9.09	34.67	26.87	•99	1495.6	287	10.84	34.92	26.76	.46
820	7.64	34.55	26.99	1.22	1493.6	420	9.71	34.78	26.85	.64
910	7.23	34.53	27.04	1.33	1493.4	646	8.28	34.63	26.96	- 93
1002	6.65	34.51	27.10	1.43	1492.7	002	0.90	24,22	\$1.00	3.41
1092	5.78	34.48	27.19	1.53						

MEMOIRS OF THE NEW ZEALAND OCEANOGRAPHIC INSTITUTE

Memoir	Vear	Title	Memoir	Vagu	Title
[1]	1955	Bibliography of New Zealand Oceanography, 1949–1953. By N.Z. OCEANOGRAPHIC COM-	19	1962	The Fauna of the Ross Sea. Part 2- Scleractinian Corals. By DONALD F. SQUIRES.
[2]	1957	MITTEE, N.Z. Dep. scient. ind. Res. geophys. Mem. 4. General Account of the Chatham Islands 1954 Expedition By G. A. KNOX, Bull N.Z.	20	1963	Bull. N.Z. Dep. scient. ind. Res. 147. Flabellum rubrum (Quoy and Gaimard). By DONALD F. SQUIRES. Bull. N.Z. Dep. scient. ind. Page 154
3	1959	Dep. scient. ind. Res. 122. Contributions to Marine Microbiology. Com- piled by T. M. SKERMAN. Inf. Ser. N.Z.	21	1963	The Fauna of the Ross Sea. Part 3. Asteroidea.ByHELEN E. SHEARBURN CLARK.
4	1960	Dep. scient. ind. Res. 22. Biological Results of the Chatham Islands 1954 Expedition. Part 1. Decapoda Brachy.	22	1964	The Marine Fauna of New Zealand: Crustacea Brachyura. By E. W. BENNETT. Bull. N.Z. Den scient ind Res 153
		ura, by R. K. DELL; Cumacea by N. S. JONES; Decapoda Natantia, by J. C. YALDWYN. Bull. N.Z. Dep. scient. ind. Res 139 (1).	23	1963	The Marine Fauna of New Zealand: Crustaceans of the Order Cumacea. By N. S. JONES. Bull. N.Z. Dep. scient. ind. Box 152
5	1960	Biological Results of the Chatham Islands 1954 Expedition. Part 2. Archibenthal and Littoral Echinoderms. By H. BARRACLOUGH FELL. Bull, N.Z. Dep. scient, ind. Res. 139	24	1964	A Bibliography of the Oceanography of the Tasman and Coral Seas, 1860–1960. By BETTY N. KREBS. Bull. N.Z. Dep. scient, ind. Res. 156.
6	1960	(2). Biological Results of the Chatham Islands 1954 Expedition. Part 3. Polychaeta Errantia. By G. A. KNOX. Bull. N.Z. Dep. scient, ind. Res. 139(3).	25	1965	A Foraminiferal Fauna from the Western Continental Shelf, North Island, New Zealand. By R. H. HEDLEY, C. M. HURDLE, and I. D. J. BURDETT. Bull. N.Z. Dep. scient.
7	1960	Biological Results of the Chatham Islands 1954 Expedition. Part 4. Marine Mollusca, by R. K. DELL: Sipunculoidea, by S. J.	26	1964	Sediments of Chatham Rise. By ROBERT M. NORRIS. Bull, N.Z. Dep. scient. ind. Res. 159.
8	1961	EDWARDS. Bull. N.Z. Dep. scient. ind. Res. 139 (4). Hydrology of New Zealand Coastal Waters	27	1965	The Fauna of the Ross Sea. Part 4. Mysidacea. By OLIVE S. TATTERSALL. Part 5. Sipun- culoidea. By S. J. EDMONDS. Bull. N.Z. Dep.
0	10(2	1955. By D. M. GARNER. Bull. N.Z. Dep. scient. ind. Res. 138.	28	1966	scient, ind. Res. 167. Sedimentation in Hawke Bay. By H. M. PANTIN, Bull. N.Z. Dep. scient, ind. Res. 171.
9	1962	Analysis of Hydrological Observations in the New Zealand Region, 1874–1955. By D. M. GARNER. Bull. N.Z. Dep. scient. ind. Res. 144.	29	1964	Biological Results of the Chatham Islands 1954 Expedition. Part 6. Scleractinia by D. F. SQUIRES. Bull. N.Z. Dep. scient. ind. Res. 139 (b)
10	1901	New Zealand. By R. W. BURLING. Bull. N.Z. Dep. scient. ind. Res. 143.	30	1966	Geology and Geomagnetism of the Bounty Region east of the South Island, New
11	1964	J. W. BRODIE. Bull. N.Z. Dep. scient. ind. Res. 161.	31	In press.	Zealand, By D. C. KRAUSE, Bull, N.Z. Dep. scient. ind. Res. 170. Marine Biology, Hydrology, Physiography of
12	1965	Hydrology of New Zealand Offshore Waters. By D. M. GARNER and N. M. RIDGWAY. Bull. N.Z. Dep. scient. ind. Res. 162.	51		Manihiki Atoll, Cook Islands. Compiled by C. McCann and J. S. BULLIVANT. Bull. N.Z. Dep. scient. ind. Res.
13	1961	Biological Results of the Chatham Islands 1954 Expedition. Part 5. Porifera: Demospongiae, by PATRICIA R. BERGQUIST; Porifera: Keratosa, by PATRICIA R. BERGQUIST; Crustacea Isopoda: Bopyri-	32	1967	The Fauna of the Ross Sea. Part 5. General Accounts, Station Lists, and Benthic Ecology. By JOHN S. BULLIVANT and JOHN H. DEARBORN. Bull. N.Z. Dep. scient. ind. Res. 176.
		Isopoda; Serolidae, by D. E. HURLEY; Hydroida, by PATRICIA M. RALPH. Bull. NZ Den scient ind Res. 139 (5)	33	1967	The Submarine Geology of Foveaux Strait. By D. J. CULLEN. Bull. N.Z. Dep. scient. ind. Res. 184.
14	1963	Submarine Morphology East of the North Island, New Zealand. By H. M. PANTIN.	34	In prep.	Benthic Ecology of Foveaux Strait. By E. W. DAWSON, Bull. N.Z. Dep. scient. ind. Res.
15	In prep.	Bull. N.Z. Dep. scient. ind. Res. 149. Marine Geology of Cook Strait. By J. W. BRODIE Bull N.Z. Dep. scient ind Res.	33	1900	Crabs, Family Majidae (Crustacea Brachy- ura). By D. J. GRIFFIN. Bull. N.Z. Dep.
16	1963	Bibliography of New Zealand Marine Zoology 1769–1899. By DOROTHY FREED. Bull. N.Z. Dan scient ind Pace 148	36	1967	scient, ind. Res. 172. Water Masses and Fronts in the Southern Ocean South of New Zealand, By TH, J.
17	1965	Studies of a Southern Fiord. By T. M. SKERMAN (Ed.) Bull. N.Z. Dep. scient. ind.	27	10/0	HOUTMAN. Bull. N.Z. Dep. scient. ind. Res. 174.
18	1961	Kes. 157. The Fauna of the Ross Sea. Part 1. Ophiuroidea. By H. BARRACLOUGH FELL. Bull. N.Z. Dep. scient. ind. Res. 142.	31	1908	Demospongiae. Part 1. Tetractinomorpha and Lithistida. By PATRICIA R. BERGQUIST. Bull. N.Z. Dep. scient. ind. Res. 188.

cc) (1)(5

Memoir		
No.	Year	Title
38	1967	The Marine Fauna of New Zealand: Intertidal Foraminifera of the Corallina officinalis zone. By R. H. HEDLEY, C. M. HURDLE and I. D. J. BURDETT. Bull. N.Z. Dep. scient. ind. Res. 180.
39	1967	Hydrology of the Southern Hikurangi Trench Region. By D. M. GARNER, Bull. N.Z. Dep. scient. ind. Res. 177.
40	1967	Sediments of the Western Shelf, North Island, New Zealand. By J. C. McDOUGALL and J. W. BRODIE. Bull. N.Z. Dep. scient. ind. Res. 179.
41	1967	Bathymetric and Geological Structure of the North-western Tasman Sea – Coral Sea – South Solomon Sea Area of the South- western Pacific Ocean. By DALE C. KRAUSE. Bull. N.Z. Dep. scient. ind. Res. 183.
42	1968	The Echinozoan Fauna of the New Zealand Subantarctic Islands, Macquarie Island and the Chatham Rise. By D. L. PAWSON, Bull. N.Z. Dep. scient. ind. Res. 187.
43	1967	The Marine Fauna of New Zealand. Sclerac- tinian Corals. By D. F. SQUIRES and I. W. KEYES. Bull. N.Z. Dep. scient. ind. Res. 185.
44	1967	A Checklist of Recent New Zealand Fora- miniferidaa. By J. V. EADE, Bull. N.Z. Dep. scient. ind. Res. 182.
45	1970	A Key to the Recent Genera of the Fora- miniferida. By K. B. LEWIS. Bull. N.Z. Dep. scient. ind. Res. 196.
46	1968	The Fauna of the Ross Sea. Part 6. Ecology and Distribution of Foraminifera. By J. P. KENNETT. Bull. N.Z. Dep. scient. ind. Res. 186.
47	1969	An Outline Distribution of the New Zealand

Shelf Fauna. Echinoidea. By D. G. McKNIGHT, Bull. N.Z. Dep. scient. ind. Res. 195.

Nemoir No.	Year	Title
48	1967	Hydrology of the South-east Tasman Sea. By D. M. GARNER. Bull. N.Z. Dep. scient. ind. Res. 181.
49	1969	The Fauna of the Ross Sea. Part 7: Pycnogonida: Colossendeidae, Pycnogoni- dia, Endeidae and Ammotheidae. By W. F. FRY and J. W. HEDGPETH. Bull. N.Z. Dep. scient. ind. Res. 198.

- 50 1969 The Marine Geology of the New Zealand Subantarctic Seafloor. By C. P. SUMMER-HAYES. Bull. N.Z. Dep. scient. ind. Res. 190.
- 51 1970 The Marine Fauna of New Zealand: Porifera, Demospongiae. Part 2. Axinellidae and Halichondrida. By PATRICIA R. BERGQUIST. Bull. N.Z. Dep. scient. ind. Res. 197.
- 52 1970 The Marine Fauna of New Zealand: Sea Cucumbers (Echinodermata; Holothuroidea.) By D. L. PAWSON. Bull. N.Z. Dep. scient. ind. Res. 201.
- 53 In press Plankton of Hauraki Gulf. By J. B. JILLETT. Bull. N.Z. Dep. scient. ind. Res.
- 54 In press Studies on New Zealand Plankton. Part 1. Pelagic Copepoda from New Zealand with a key to Pelagic Genera. Part 2. Plankton and Environmental Variation (Kaikoura 1964-65). By J. M. BRADFORD. Bull. N.Z. Dep. scient. ind. Res.
- 55 In press Bay Head Sand Beaches of Banks Peninsula, New Zealand. By P. R. DINGWALL. Bull. N.Z. Dep. scient. ind. Res.

A. R. SHEARER, GOVERNMENT PRINTER, WELLINGTON, NEW ZEALAND-1970

A R. SHEARER, GOVERNMENT PRINTER, WELLINGTON, NEW ZEALAND-1970

